Grove - Infrared Receiver

Introduction

3.3V 5.0V Digital

The Infrared Receiver is used to receive infrared signals and also used for remote control detection. There is an IR detector on the Infrared Receiver which is used to get the infrared light emitted by the Infrared Emitter. The IR detector have a demodulator inside that looks for modulated IR at 38 KHz. The Infrared Receiver can receive signals well within 10 meters. If more than 10 meters , the receiver may not get the signals. We often use the two Groves-the Infrared Receiver and the Grove - Infrared Emitter to work together.

Specifications

  • Voltage: 3.3-5V
  • Distance: 10m

Tip

More details about Grove modules please refer to Grove System

Platforms Supported

Demonstration

We will use Grove-Infrared Receiver and Grove - Infrared Emitter in this demonstration. The Infrared Receiver will receive the data that the Grove - Infrared Emitter sends.

  • Connect the Grove - Infrared Emitter to D3.
  • Connect the Grove - Infrared Receiver to D2.

With Arduino/Seeeduino

Suggest Reading for Starter

IRSendRev Library

We have created a library to help you start playing quickly with the Seeeduino/Arduino, in this section we’ll show you how to set up the library.

Setup

  1. Download the library code as a zip file from the IRSendRev github page.
  2. Unzip the downloaded file into your …/arduino/libraries.
  3. Rename the unzipped folder “IRSendRev”
  4. Start the Arduino IDE (or restart if it is open).

Infrared Receiver Examples/Applications

These examples are going to show you how to use features of Grove - Infrared Receiver. You can use Infrared Receiver in combination with Grove - Infrared Emitter. Connect the IR receiver pins to D2 for this demo.

Receiver

  • Open File->Examples->IRSendRev->example->recv sketch for a complete example, or copy and paste code below to a new Arduino sketch.

Description: This example connect the IR receiver pins to D2 for this demo. You can see the remote control’s infrared data that received through a serial port terminal, then write the received infrared data into send.ino and upload to the board with Infrared Emitter Grove, so you can send the same data with remote control’s button.

Application: You can note the remote control’s infrared data down through Infrared Receiver, then send the same data through Infrared Emitter in some cases, such as open the fan switch when indoor temperature is greater than 26 degrees.

#include <IRSendRev.h>
 
#define BIT_LEN         0
#define BIT_START_H     1
#define BIT_START_L     2
#define BIT_DATA_H      3
#define BIT_DATA_L      4
#define BIT_DATA_LEN    5
#define BIT_DATA        6
 
const int pinRecv = 2;              // ir receiver connect to D2
 
void setup()
{
    Serial.begin(115200);
    IR.Init(pinRecv);
    Serial.println("init over");
}
 
unsigned char dta[20];
 
void loop()
{
    if(IR.IsDta())                  // get IR data
    {
        IR.Recv(dta);               // receive data to dta
 
        Serial.println("+------------------------------------------------------+");
        Serial.print("LEN = ");
        Serial.println(dta[BIT_LEN]);
        Serial.print("START_H: ");
        Serial.print(dta[BIT_START_H]);
        Serial.print("\tSTART_L: ");
        Serial.println(dta[BIT_START_L]);
 
        Serial.print("DATA_H: ");
        Serial.print(dta[BIT_DATA_H]);
        Serial.print("\tDATA_L: ");
        Serial.println(dta[BIT_DATA_L]);
 
        Serial.print("\r\nDATA_LEN = ");
        Serial.println(dta[BIT_DATA_LEN]);
 
        Serial.print("DATA: ");
        for(int i=0; i<dta[BIT_DATA_LEN]; i++)
        {
            Serial.print("0x");
            Serial.print(dta[i+BIT_DATA], HEX);
            Serial.print("\t");
        }
        Serial.println();
 
        Serial.print("DATA: ");
        for(int i=0; i<dta[BIT_DATA_LEN]; i++)
        {
            Serial.print(dta[i+BIT_DATA], DEC);
            Serial.print("\t");
        }
        Serial.println();
        Serial.println("+------------------------------------------------------+\r\n\r\n");
    }
}
  • Upload the code to the development board.
  • Open the serial monitor window and wait for the input.
  • Using IR remote control sending data(This example uses MIDEA Company’s IR remote control of fans, and press the open/close key.).
  • You can see the information below.

Emitter

  • Open File->Examples->IRSendRev->example->send sketch for a complete example, or copy and paste code below to a new Arduino sketch.

Description: Connect the IR send pins to D3 for this demo. You can see the remote control’s infrared data that received through Infrared Receiver, such as the example above. Then write the received infrared data into this example and upload to the board with Infrared Emitter Grove, so you can send the same data with remote control’s button.

Application: You can note the remote control’s infrared data down through Infrared Receiver, then send the same data through Infrared Emitter in some cases, such as open the fan switch when indoor temperature is greater than 26 degrees.

Note

You must connect the IR send pins to D3 for this demo.
#include <IRSendRev.h>
 
#define BIT_LEN         0
#define BIT_START_H     1
#define BIT_START_L     2
#define BIT_DATA_H      3
#define BIT_DATA_L      4
#define BIT_DATA_LEN    5
#define BIT_DATA        6
 
const int ir_freq = 38;                 // 38k
 
unsigned char dtaSend[20];
 
void dtaInit()
{
    dtaSend[BIT_LEN]        = 11;          // all data that needs to be sent
    dtaSend[BIT_START_H]    = 180;         // the logic high duration of "Start"
    dtaSend[BIT_START_L]    = 91;          // the logic low duration of "Start"
    dtaSend[BIT_DATA_H]     = 11;          // the logic "long" duration in the communication
    dtaSend[BIT_DATA_L]     = 33;          // the logic "short" duration in the communication
 
    dtaSend[BIT_DATA_LEN]   = 6;           // Number of data which will sent. If the number is other, you should increase or reduce dtaSend[BIT_DATA+x].
 
    dtaSend[BIT_DATA+0]     = 128;           // data that will sent
    dtaSend[BIT_DATA+1]     = 127;
    dtaSend[BIT_DATA+2]     = 192;
    dtaSend[BIT_DATA+3]     = 63;
    dtaSend[BIT_DATA+4]     = 192;
    dtaSend[BIT_DATA+5]     = 63;
}
 
void setup()
{
    dtaInit();
}
 
void loop()
{
    IR.Send(dtaSend, 38);
 
    delay(2000);
}

Resources


ArduinoWioBeagleBoneRaspberry PiLinkIt ONE

Caution

The platforms mentioned above as supported is/are an indication of the module's hardware or theoritical compatibility. We only provide software library or code examples for Arduino platform in most cases. It is not possible to provide software library / demo code for all possible MCU platforms. Hence, users have to write their own software library.

Techsupport

For any technical issue, you are most welcome to contact techsupport@seeed.cc, our techsupport engineers will help you. Thank you!

Help us make it better

Welcome to the new documentation system of Seeed Studio. We have made a lot of progress comparing to the old wiki system and will continue to improve it to make it more user friendly and helpful. The improvement can't be done without your kindly feedback. If you have any suggestions or findings, you are most welcome to submit the amended version as our contributor via Github or give us suggestions in the survey below, it would be more appreciated if you could leave your email so that we can reply to you. Happy Hacking!